NASA - National Aeronautics and Space Administration
+ Visit NASA.gov

centaur base

The first generation Robonaut was designed by the Robot Systems Technology Branch at NASA's Johnson Space Center in a collaborative effort with DARPA. The Robonaut project seeks to develop and demonstrate a robotic system that can function as an EVA astronaut equivalent. Robonaut jumps generations ahead by eliminating the robotic scars (e.g., special robotic grapples and targets) and specialized robotic tools of traditional on-orbit robotics. However, it still keeps the human operator in the control loop through its telepresence control system. Robonaut is designed to be used for "EVA" tasks, i.e., those which were not specifically designed for robots.

Our challenge is to build machines that can help humans work and explore in space. Working side by side with humans, or going where the risks are too great for people, machines like Robonaut will expand our ability for construction and discovery. Central to that effort is a capability we call dexterous manipulation, embodied by an ability to use ones hand to do work, and our challenge has been to build machines with dexterity that exceeds that of a suited astronaut. The resulting robotic system called Robonaut is the product of NASA and DARPA collaboration, supporting the hard work of many JSC Engineers that are determined to meet these goals.

We are using a humanoid shape to meet NASA's increasing requirements for Extravehicular Activity (EVA, or spacewalks). Over the past five decades, space flight hardware has been designed for human servicing. Space walks are planned for most of the assembly missions for the International Space Station, and they are a key contingency for resolving on-orbit failures. Combined with our substantial investment in EVA tools, this accumulation of equipment requiring a humanoid shape and an assumed level of human performance presents a unique opportunity for a humanoid system.

While the depth and breadth of human performance is beyond the current state of the art in robotics, NASA targeted the reduced dexterity and performance of a suited astronaut as Robonaut's design goals, specifically using the work envelope, ranges of motion, strength and endurance capabilities of space walking humans. This website describes the design effort for the entire Robonaut system, including mechanisms, avionics, computational architecture and telepresence control.

MORE INFO IN NASA SITE NETWORK